organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(+)-N-[2-(4-Chlorophenyl)propanoyl]bornane-10,2-sultam

Wen-Chang Lu, Jun Cao, Chen Cheng, Guang-Ao Yu and Sheng-Hua Liu*

Key Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China Correspondence e-mail: chshliu@mail.ccnu.edu.cn

Received 16 November 2007; accepted 21 December 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.053; wR factor = 0.180; data-to-parameter ratio = 16.2.

In the molecular structure of the title compound, C₁₉H₂₄ClNO₃S, the six-membered ring of the bornane unit shows a boat form, while the five-membered ring of the sultam unit adopts a twist form. Intramolecular C-H···N and C- $H \cdots O$ interactions are observed. In the crystal structure, molecules are connected by intermolecular $C-H \cdots O$ hydrogen bonds into a chain running along the b axis. The crystal was a partial inversion twin with a twin ratio of 0.73 (1):0.27 (1).

Related literature

For related literature, see: Boiadjiev & Lightner (2001); Oppolzer (1989, 1990).

a = 21.0863 (16) Å

b = 7.7948 (6) Å

c = 12.102 (1) Å

Experimental

Crystal data C19H24CINO3S $M_r = 381.90$ Monoclinic, C2

$\beta = 107.433 \ (1)^{\circ}$
V = 1897.8 (3) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: none 5780 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	
$wR(F^2) = 0.180$	
S = 1.10	
3715 reflections	
229 parameters	
1 restraint	

 $\mu = 0.33 \text{ mm}^{-1}$ T = 295 (2) K $0.30 \times 0.20 \times 0.20$ mm

3715 independent reflections
3146 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.032$

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1503 Friedel pairs Flack parameter: 0.27 (1)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8−H8 <i>B</i> ···N1	0.96	2.54	3.129 (6)	120
C19−H19···O3	0.93	2.59	3.196 (6)	123
$C12-H12\cdots O1$ $C10-H10A\cdots O3^{i}$	0.98	2.49	3.268 (6)	137
	0.97	2.36	3.292 (5)	161

Symmetry code: (i) x, y - 1, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20572029), the New Century Excellent Talents in Universities (grant No. NCET-04-0743), and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (grant No. 705039).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2250).

References

Boiadjiev, S. E. & Lightner, D. A. (2001). Tetrahedron Asymm. 12, 2551-2564. Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Oppolzer, W. (1989). Tetrahedron Lett. 41, 5603-5606.

Oppolzer, W. (1990). Pure Appl. Chem. 62, 1241-1250.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2008). E64, o454 [doi:10.1107/S1600536807067980]

(+)-N-[2-(4-Chlorophenyl)propanoyl]bornane-10,2-sultam

W.-C. Lu, J. Cao, C. Cheng, G.-A. Yu and S.-H. Liu

Comment

Pioneering work of Oppolzer (1990) has resulted in the development of bornane[10,2]sultam serve as popular and widely used chiral auxiliaries in asymmetric synthesis. The resulting asymmetric induction using these auxiliaries are high in carbon-carbon bond formation such as alkylation (Oppolzer, 1989), and we have focused our attention on this field. In this paper, we present X-ray crystallographic analysis of the title compound, (I).

In (I), the six-membered ring of sultam shows a boat form (Fig. 1). The planes constructed by C3/C2/C1/C6and C3/C4/C5/C6 form a dihedral angle of 110.71°. The C7/C8/C9 plane makes dihedral angles of 93.92 and 90.93°, respectively, with C3/C2/C1/C6 and C3/C4/C5/C6 planes. Molecules are linked by the intermolecular C—H…O hydrogen bonds into a one-dimensional chain. No direction-specific interactions were observed between the adjacent chains along the *b* axis (Fig. 2).

Experimental

For the preparation of compound (I), 2.4 ml n-BuLi (hexane, 2.5 mol/*L*) was added over 30 min to the THF (25 ml) solution of (+)-*N*-[2-(4-chlorophenyl)-ethanoyl]bornane-10,2-sultam (1.84 g, 5 mmol) at 193 K. After stirring the mixture at 193 K for 1 h, iodomethane 1.6 ml in 4.5 ml HMPA was added and then stirred at 193 K for 3 h. The solution was slowly warming up to room temperature, quenched with water and extracted bt Et_2O to afford a crude product. Single crystals appropriate for data collection were obtained by slow evaporation of a dichloromethane solution at 293 K.

Refinement

All H atoms were constrained to an ideal geometry (C—H = 0.93 - 0.98 Å) and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The ratio of the twin components (major to minor) in crystal selected for diffraction is 0.73 (1):0.27 (1). The absolute configuration of the sultam unit is consistent with the known absolute configuration of (+)-2,10-sultam (Boiadjiev & Lightner, 2001). The major component is (+)-*N*-[(2*S*)-(4-chlorophenyl)-propanoyl] bornane-10,2-sultam, and the minor is (+)-*N*-[(2*R*)-(4-chlorophenyl)-propanoyl] bornane-10,2-sultam. The result was confirmed by HPLC.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. Part of the crystal packing, showing the formation of the one-dimensional chain formed by a C10—H10A···O3 hydrogen bond.

(+)-N-[2-(4-Chlorophenyl)propanoyl]bornane-10,2-sultam

C ₁₉ H ₂₄ ClNO ₃ S	$F_{000} = 808$
$M_r = 381.90$	$D_{\rm x} = 1.337 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 2555 reflections
<i>a</i> = 21.0863 (16) Å	$\theta = 2.8 - 26.0^{\circ}$
b = 7.7948 (6) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 12.102 (1) Å	T = 295 (2) K
$\beta = 107.433 (1)^{\circ}$	Block, colorless
V = 1897.8 (3) Å ³	$0.30 \times 0.20 \times 0.20 \text{ mm}$
7 = 4	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3146 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.032$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$
T = 295(2) K	$\theta_{\min} = 1.8^{\circ}$
φ and ω scans	$h = -25 \rightarrow 26$
Absorption correction: none	$k = -9 \rightarrow 9$
5780 measured reflections	$l = -14 \rightarrow 15$
3715 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1128P)^{2} + 0.2113P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.180$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.10	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
3715 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
229 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1503 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.27 (1)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.41765 (17)	0.1484 (5)	0.2515 (3)	0.0363 (8)
H1	0.4074	0.1971	0.3188	0.044*
C2	0.3700 (2)	0.2236 (6)	0.1388 (4)	0.0492 (10)
H2A	0.3436	0.3165	0.1552	0.059*
H2B	0.3942	0.2647	0.0873	0.059*
C3	0.32641 (19)	0.0678 (7)	0.0869 (4)	0.0501 (10)
H3	0.3002	0.0816	0.0056	0.060*
C4	0.28491 (19)	0.0218 (7)	0.1686 (4)	0.0568 (12)
H4A	0.2497	-0.0582	0.1318	0.068*
H4B	0.2655	0.1236	0.1913	0.068*
C5	0.33625 (18)	-0.0616 (6)	0.2743 (4)	0.0463 (10)
H5A	0.3387	-0.0004	0.3453	0.056*
H5B	0.3256	-0.1810	0.2829	0.056*
C6	0.40133 (17)	-0.0439 (5)	0.2421 (3)	0.0364 (8)
C7	0.37733 (19)	-0.0803 (6)	0.1092 (3)	0.0486 (10)
C8	0.4297 (2)	-0.0585 (7)	0.0450 (4)	0.0582 (13)

H8A	0.4640	-0.1429	0.0721	0.087*
H8B	0.4488	0.0542	0.0595	0.087*
H8C	0.4090	-0.0731	-0.0367	0.087*
C9	0.3474 (3)	-0.2582 (7)	0.0795 (5)	0.0661 (14)
H9A	0.3291	-0.2688	-0.0030	0.099*
H9B	0.3128	-0.2747	0.1150	0.099*
Н9С	0.3813	-0.3433	0.1076	0.099*
C10	0.46138 (18)	-0.1414 (5)	0.3168 (4)	0.0421 (9)
H10A	0.4653	-0.2514	0.2819	0.051*
H10B	0.4570	-0.1614	0.3933	0.051*
C11	0.5168 (2)	0.3268 (5)	0.2714 (4)	0.0438 (9)
C12	0.59037 (19)	0.3421 (6)	0.2804 (4)	0.0511 (11)
H12	0.6053	0.2315	0.2587	0.061*
C13	0.5985 (3)	0.4787 (9)	0.1933 (5)	0.0770 (15)
H13A	0.5714	0.4486	0.1168	0.115*
H13B	0.6443	0.4837	0.1947	0.115*
H13C	0.5851	0.5886	0.2142	0.115*
C14	0.63302 (19)	0.3854 (6)	0.4024 (4)	0.0475 (10)
C15	0.7005 (2)	0.3585 (7)	0.4306 (5)	0.0612 (13)
H15	0.7185	0.3183	0.3741	0.073*
C16	0.7427 (2)	0.3902 (9)	0.5418 (5)	0.0722 (16)
H16	0.7879	0.3674	0.5602	0.087*
C17	0.7166 (2)	0.4547 (6)	0.6224 (4)	0.0513 (11)
C18	0.6501 (2)	0.4816 (7)	0.5981 (4)	0.0541 (10)
H18	0.6327	0.5210	0.6555	0.065*
C19	0.6085 (2)	0.4500 (6)	0.4877 (4)	0.0525 (11)
H19	0.5633	0.4726	0.4706	0.063*
Cl1	0.76886 (6)	0.4977 (2)	0.76187 (10)	0.0713 (4)
N1	0.48941 (14)	0.1662 (4)	0.2660 (3)	0.0379 (7)
O1	0.57014 (16)	-0.0733 (5)	0.2551 (4)	0.0704 (10)
O2	0.56815 (15)	0.0226 (5)	0.4436 (3)	0.0658 (9)
O3	0.48162 (16)	0.4517 (4)	0.2627 (3)	0.0652 (9)
S1	0.53270 (4)	-0.01249 (12)	0.32646 (8)	0.0425 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0282 (16)	0.043 (2)	0.0375 (19)	0.0012 (14)	0.0089 (15)	-0.0034 (15)
C2	0.036 (2)	0.055 (3)	0.054 (2)	0.0044 (18)	0.0085 (19)	0.0126 (19)
C3	0.035 (2)	0.070 (3)	0.040 (2)	0.0050 (19)	0.0048 (16)	0.0042 (19)
C4	0.0293 (17)	0.074 (3)	0.064 (3)	-0.0003 (19)	0.0094 (18)	-0.005 (2)
C5	0.0349 (19)	0.054 (3)	0.050 (2)	-0.0066 (16)	0.0133 (17)	-0.0024 (18)
C6	0.0295 (16)	0.042 (2)	0.0350 (17)	-0.0029 (14)	0.0053 (13)	-0.0059 (15)
C7	0.0311 (18)	0.068 (3)	0.040 (2)	-0.0032 (18)	0.0003 (16)	-0.0083 (19)
C8	0.050 (2)	0.086 (4)	0.039 (2)	-0.003 (2)	0.0138 (17)	-0.007 (2)
C9	0.050 (3)	0.078 (4)	0.062 (3)	-0.019 (2)	0.006 (2)	-0.027 (3)
C10	0.0339 (18)	0.042 (2)	0.046 (2)	-0.0011 (16)	0.0052 (16)	-0.0013 (17)
C11	0.040 (2)	0.040 (2)	0.050 (2)	-0.0063 (16)	0.0127 (17)	-0.0082 (17)

C12	0.0341 (19)	0.058 (3)	0.064 (3)	-0.0119 (18)	0.0193 (19)	-0.014 (2)
C13	0.065 (3)	0.094 (4)	0.074 (3)	-0.021 (3)	0.024 (3)	0.007 (4)
C14	0.040 (2)	0.039 (2)	0.069 (3)	-0.0104 (16)	0.023 (2)	-0.0057 (19)
C15	0.044 (2)	0.073 (3)	0.075 (3)	-0.001 (2)	0.029 (2)	-0.020 (3)
C16	0.032 (2)	0.099 (4)	0.082 (4)	0.000 (2)	0.011 (2)	-0.023 (3)
C17	0.045 (2)	0.053 (3)	0.056 (2)	-0.0047 (19)	0.0165 (19)	-0.002 (2)
C18	0.045 (2)	0.063 (3)	0.060 (2)	-0.009 (2)	0.0233 (18)	-0.009 (2)
C19	0.0355 (19)	0.049 (3)	0.075 (3)	-0.0019 (17)	0.0184 (19)	-0.009 (2)
Cl1	0.0574 (6)	0.0895 (9)	0.0600 (7)	-0.0096 (7)	0.0069 (5)	0.0001 (7)
N1	0.0274 (14)	0.0417 (17)	0.0414 (17)	-0.0041 (13)	0.0053 (13)	-0.0031 (13)
O1	0.0474 (17)	0.065 (2)	0.110 (3)	0.0134 (15)	0.0403 (19)	0.0048 (19)
O2	0.0575 (18)	0.068 (2)	0.0543 (17)	-0.0164 (16)	-0.0104 (14)	0.0087 (16)
O3	0.0473 (16)	0.0416 (19)	0.103 (3)	-0.0022 (13)	0.0172 (17)	-0.0090 (16)
S1	0.0290 (4)	0.0460 (5)	0.0476 (5)	0.0002 (4)	0.0041 (3)	0.0030 (5)

Geometric parameters (Å, °)

C1—N1	1.477 (4)	C10—S1	1.783 (4)
C1—C6	1.535 (6)	C10—H10A	0.9700
C1—C2	1.547 (5)	C10—H10B	0.9700
С1—Н1	0.9800	C11—O3	1.209 (5)
C2—C3	1.539 (6)	C11—N1	1.371 (5)
C2—H2A	0.9700	C11—C12	1.528 (5)
C2—H2B	0.9700	C12—C14	1.518 (6)
C3—C7	1.544 (6)	C12—C13	1.544 (8)
C3—C4	1.545 (6)	С12—Н12	0.9800
С3—Н3	0.9800	С13—Н13А	0.9600
C4—C5	1.549 (6)	C13—H13B	0.9600
C4—H4A	0.9700	C13—H13C	0.9600
C4—H4B	0.9700	C14—C15	1.377 (6)
C5—C6	1.541 (5)	C14—C19	1.380 (6)
C5—H5A	0.9700	C15—C16	1.395 (7)
С5—Н5В	0.9700	C15—H15	0.9300
C6—C10	1.521 (5)	C16—C17	1.351 (7)
C6—C7	1.561 (5)	C16—H16	0.9300
С7—С9	1.522 (7)	C17—C18	1.360 (6)
С7—С8	1.538 (6)	C17—Cl1	1.749 (4)
C8—H8A	0.9600	C18—C19	1.384 (6)
C8—H8B	0.9600	C18—H18	0.9300
C8—H8C	0.9600	С19—Н19	0.9300
С9—Н9А	0.9600	N1—S1	1.706 (3)
С9—Н9В	0.9600	O1—S1	1.415 (4)
С9—Н9С	0.9600	O2—S1	1.417 (3)
N1—C1—C6	107.4 (3)	С7—С9—Н9С	109.5
N1—C1—C2	116.2 (3)	Н9А—С9—Н9С	109.5
C6—C1—C2	103.4 (3)	Н9В—С9—Н9С	109.5
N1—C1—H1	109.8	C6—C10—S1	107.0 (3)
С6—С1—Н1	109.8	C6—C10—H10A	110.3
C2—C1—H1	109.8	S1—C10—H10A	110.3

63 63 61	102 2 (2)	C(C10 U10D	110.2
$C_3 = C_2 = C_1$	102.2 (3)	C6-C10-HI0B	110.3
$C_3 = C_2 = H_2 A$	111.3		110.3
C1 - C2 - H2A	111.3	HI0A—CI0—HI0B	108.6
$C_3 - C_2 - H_2 B$	111.3	03-CII-NI	119.5 (4)
CI-C2-H2B	111.3	03-011-012	121.7 (4)
H2A—C2—H2B	109.2		118.6 (4)
C2—C3—C7	102.7 (3)		112.3 (3)
C2—C3—C4	107.8 (4)	C14—C12—C13	110.8 (4)
C/C3C4	102.3 (4)	C11—C12—C13	108.9 (4)
С2—С3—Н3	114.3	C14—C12—H12	108.2
С/—С3—Н3	114.3	С11—С12—Н12	108.2
C4—C3—H3	114.3	С13—С12—Н12	108.2
C3—C4—C5	103.6 (3)	С12—С13—Н13А	109.5
C3—C4—H4A	111.0	С12—С13—Н13В	109.5
С5—С4—Н4А	111.0	H13A—C13—H13B	109.5
C3—C4—H4B	111.0	C12—C13—H13C	109.5
C5—C4—H4B	111.0	H13A—C13—H13C	109.5
H4A—C4—H4B	109.0	H13B—C13—H13C	109.5
C6—C5—C4	102.0 (3)	C15—C14—C19	117.4 (4)
С6—С5—Н5А	111.4	C15-C14-C12	118.3 (4)
С4—С5—Н5А	111.4	C19—C14—C12	124.2 (4)
C6—C5—H5B	111.4	C14—C15—C16	121.6 (4)
C4—C5—H5B	111.4	C14—C15—H15	119.2
H5A—C5—H5B	109.2	C16—C15—H15	119.2
C10—C6—C1	108.4 (3)	C17—C16—C15	118.9 (4)
C10—C6—C5	116.8 (3)	C17—C16—H16	120.5
C1—C6—C5	105.4 (3)	C15-C16-H16	120.5
C10—C6—C7	118.5 (3)	C16—C17—C18	121.1 (4)
C1—C6—C7	104.5 (3)	C16—C17—Cl1	119.6 (3)
C5—C6—C7	101.9 (3)	C18—C17—Cl1	119.3 (3)
С9—С7—С8	106.9 (4)	C17—C18—C19	119.7 (4)
С9—С7—С3	115.0 (4)	C17-C18-H18	120.1
C8—C7—C3	113.4 (4)	C19-C18-H18	120.1
С9—С7—С6	113.1 (4)	C14—C19—C18	121.1 (4)
C8—C7—C6	116.1 (3)	C14—C19—H19	119.4
С3—С7—С6	92.2 (3)	С18—С19—Н19	119.4
С7—С8—Н8А	109.5	C11—N1—C1	119.5 (3)
С7—С8—Н8В	109.5	C11—N1—S1	124.2 (3)
H8A—C8—H8B	109.5	C1—N1—S1	111.8 (3)
С7—С8—Н8С	109.5	O1—S1—O2	116.8 (2)
H8A—C8—H8C	109.5	O1—S1—N1	109.7 (2)
H8B—C8—H8C	109.5	O2—S1—N1	109.0 (2)
С7—С9—Н9А	109.5	O1—S1—C10	112.6 (2)
С7—С9—Н9В	109.5	O2—S1—C10	110.9 (2)
Н9А—С9—Н9В	109.5	N1—S1—C10	95.73 (16)
N1—C1—C2—C3	124.3 (3)	N1-C11-C12-C14	-103.2 (4)
C6—C1—C2—C3	6.9 (4)	O3—C11—C12—C13	-42.4 (6)
C1—C2—C3—C7	-41.2 (4)	N1—C11—C12—C13	133.6 (4)
C1—C2—C3—C4	66.3 (4)	C11—C12—C14—C15	163.0 (4)

C2—C3—C4—C5	-73.6 (4)	C13-C12-C14-C15	-75.0 (6)
C7—C3—C4—C5	34.3 (4)	C11-C12-C14-C19	-16.9 (6)
C3—C4—C5—C6	2.8 (5)	C13-C12-C14-C19	105.2 (5)
N1-C1-C6-C10	33.0 (4)	C19-C14-C15-C16	1.9 (8)
C2-C1-C6-C10	156.4 (3)	C12-C14-C15-C16	-178.0 (5)
N1—C1—C6—C5	158.8 (3)	C14-C15-C16-C17	-2.4 (9)
C2—C1—C6—C5	-77.8 (3)	C15—C16—C17—C18	3.0 (9)
N1—C1—C6—C7	-94.3 (3)	C15-C16-C17-Cl1	-179.2 (4)
C2-C1-C6-C7	29.1 (4)	C16-C17-C18-C19	-3.0 (8)
C4—C5—C6—C10	-169.3 (4)	Cl1—C17—C18—C19	179.2 (4)
C4—C5—C6—C1	70.3 (4)	C15-C14-C19-C18	-1.9 (7)
C4—C5—C6—C7	-38.6 (4)	C12—C14—C19—C18	178.0 (5)
C2—C3—C7—C9	173.1 (4)	C17-C18-C19-C14	2.4 (8)
C4—C3—C7—C9	61.4 (5)	O3—C11—N1—C1	-1.0 (6)
C2—C3—C7—C8	-63.5 (4)	C12-C11-N1-C1	-177.0 (3)
C4—C3—C7—C8	-175.2 (3)	O3—C11—N1—S1	-155.2 (4)
C2—C3—C7—C6	56.3 (4)	C12—C11—N1—S1	28.7 (5)
C4—C3—C7—C6	-55.5 (3)	C6-C1-N1-C11	177.1 (3)
C10—C6—C7—C9	69.0 (5)	C2-C1-N1-C11	61.9 (5)
C1—C6—C7—C9	-170.2 (4)	C6—C1—N1—S1	-25.7 (4)
C5—C6—C7—C9	-60.7 (4)	C2-C1-N1-S1	-140.9 (3)
C10—C6—C7—C8	-55.2 (5)	C11—N1—S1—O1	-78.3 (4)
C1—C6—C7—C8	65.6 (5)	C1—N1—S1—O1	125.7 (3)
С5—С6—С7—С8	175.1 (4)	C11—N1—S1—O2	50.7 (4)
C10—C6—C7—C3	-172.6 (3)	C1—N1—S1—O2	-105.2 (3)
C1—C6—C7—C3	-51.8 (3)	C11—N1—S1—C10	165.1 (3)
C5—C6—C7—C3	57.7 (4)	C1—N1—S1—C10	9.2 (3)
C1-C6-C10-S1	-26.2 (4)	C6—C10—S1—O1	-103.7 (3)
C5-C6-C10-S1	-145.0 (3)	C6-C10-S1-O2	123.2 (3)
C7-C6-C10-S1	92.5 (4)	C6-C10-S1-N1	10.3 (3)
O3—C11—C12—C14	80.8 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \mathbf{H} \cdots \!\!\!- A$
C8—H8B…N1	0.96	2.54	3.129 (6)	120
С19—Н19…ОЗ	0.93	2.59	3.196 (6)	123
C12—H12…O1	0.98	2.49	3.268 (6)	137
C10—H10A···O3 ⁱ	0.97	2.36	3.292 (5)	161
Symmetry codes: (i) $x, y=1, z$.				

